Nrf2 inhibition increases sensitivity to chemotherapy of colorectal cancer by promoting ferroptosis and pyroptosis

Author:

Huang Yongzhou,Yang Wenchang,Yang Lei,Wang Tao,Li Chengguo,Yu Jiaxian,Zhang Peng,Yin Yuping,Li Ruidong,Tao Kaixiong

Abstract

AbstractOxaliplatin is widely used in chemotherapy for colorectal cancer (CRC), but its sensitivity has become a major obstacle to limiting efficacy. Many literatures reported that Nrf2 activation promoted tumor chemoresistance. In this study, we explored the role and mechanism of Nrf2 inhibition in oxaliplatin-based chemosensitivity of CRC. In vitro experiments, we applied 4-octyl itaconate (4-OI) to activate Nrf2, and used lentivirus to knock down Nrf2 in CRC cell lines. By measuring cell viability, colony formation, apoptosis, reactive oxygen species production, and western blot, we found that oxaliplatin and lobaplatin suppressed the growth of HCT-116 and LOVO cells in a dose-dependent manner, and promoted the expression of Nrf2. 4-OI, an Nrf2 activator, reduced the sensibility of CRC cells to oxaliplatin and lobaplatin, while the knockdown of Nrf2 promoted the sensibility of CRC cells to oxaliplatin and lobaplatin. Through the public databases, we found that the expression of GPX4 in normal tissues was lower compared with cancer tissues in CRC, and the high GPX4 expression predicted a poor prognosis. Meanwhile, we found that oxaliplatin reduced the expression of GPX4 in vitro. The knockdown of Nrf2 enhanced the effects of oxaliplatin to reduce the expression of GPX4 and GSH content, and increase the MDA content, which enhanced oxaliplatin-induced ferroptosis. Subsequently, we found that oxaliplatin promoted the expression of GSDME-N, and induced LDH, IL-1β, and TNF-a release, and the knockdown of Nrf2 aggravated the occurrence of GSMDE-mediated pyroptosis. Finally, we found that the knockdown of Nrf2 enhanced the inhibition of oxaliplatin on HCT116 xenograft tumor growth in vivo. Thus, our study showed that Nrf2 inhibition improved sensitivity to oxaliplatin of CRC cells by promoting ferroptosis and pyroptosis, which provided a new target for overcoming chemoresistance in CRC.

Funder

National Natural Science Foundation of China

Science Foundation of Union Hospital

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3