Data-driven models to predict shale wettability for CO2 sequestration applications

Author:

Ibrahim Ahmed Farid,Elkatatny Salaheldin

Abstract

AbstractThe significance of CO2 wetting behavior in shale formations has been emphasized in various CO2 sequestration applications. Traditional laboratory experimental techniques used to assess shale wettability are complex and time-consuming. To overcome these limitations, the study proposes the use of machine learning (ML); artificial neural networks (ANN), support vector machines (SVM), and adaptive neuro-fuzzy inference systems (ANFIS) tools to estimate the contact angle, a key indicator of shale wettability, providing a more efficient alternative to conventional laboratory methods. A dataset comprising various shale samples under different conditions was collected to predict shale-water-CO2 wettability by considering shale properties, operating pressure and temperature, and brine salinity. Pearson’s correlation coefficient (R) was utilized to assess the linearity between the contact angle (CA) value and other input parameters. Initial data analysis showed that the elements affecting the shale wettability are primarily reliant on the pressure and temperature at which it operates, the total organic content (TOC), and the mineral composition of the rock. Between the different ML models, the artificial neural network (ANN) model performed the best, achieving a training R2 of 0.99, testing R2 of 0.98 and a validation R2 of 0.96, with an RMSE below 5. The adaptive neuro-fuzzy inference system (ANFIS) model also accurately predicted the contact angle, obtaining a training R2 of 0.99, testing R2 of 0.97 and a validation R2 of 0.95. Conversely, the support vector machine (SVM) model displayed signs of overfitting, as it achieved R2 values of 0.99 in the training dataset, which decreased to 0.94 in the testing dataset, and 0.88 in the validation dataset. To avoid rerunning the ML models, an empirical correlation was developed based on the optimized weights and biases obtained from the ANN model to predict contact angle values using input parameters and the validation data set revealed R2 of 0.96. The parametric study showed that, among the factors influencing shale wettability at a constant TOC, pressure had the most significant impact, and the dependency of the contact angle on pressure increased when TOC values were high.

Funder

Deanship of Research Oversight and Coordination (DROC) at King Fahd University of Petroleum & Minerals

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3