Long chain ceramides raise the main phase transition of monounsaturated phospholipids to physiological temperature

Author:

Takahashi Hiroshi,Hayakawa Tomohiro,Makino Asami,Iwamoto Kunihiko,Ito Kazuki,Sato Satoshi B.,Kobayashi Toshihide

Abstract

AbstractLittle is known about the molecular mechanisms of ceramide-mediated cellular signaling. We examined the effects of palmitoyl ceramide (C16-ceramide) and stearoyl ceramide (C18-ceramide) on the phase behavior of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) using differential scanning calorimetry (DSC) and small- and wide-angle X-ray scattering (SAXS, WAXS). As previously published, the presence of ceramides increased the lamellar gel-to-lamellar liquid crystalline (Lβ–Lα) phase transition temperature of POPC and POPE and decreased the Lα-to-inverted hexagonal (Lα–HII) phase transition temperature of POPE. Interestingly, despite an ~ 30° difference in the main phase transition temperatures of POPC and POPE, the Lβ–Lα phase transition temperatures were very close between POPC/C18-ceramide and POPE/C18-ceramide and were near physiological temperature. A comparison of the results of C16-ceramide in published and our own results with those of C18-ceramide indicates that increase of the carbon chain length of ceramide from 16 to 18 and/or the small difference of ceramide content in the membrane dramatically change the phase transition temperature of POPC and POPE to near physiological temperature. Our results support the idea that ceramide signaling is mediated by the alteration of lipid phase-dependent partitioning of signaling proteins.

Funder

Ministry of Education, Culture, Sports, Science and Technology

RIKEN

Agence Nationale de la Recherche

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3