1. Settles, B. Active Learning Literature Survey (Tech Rep, 2009).
2. Shahriari, B., Swersky, K., Wang, Z., Adams, R. P. & De Freitas, N. Taking the human out of the loop: A review of Bayesian optimization. Proc. IEEE 104, 148–175 (2015).
3. Xiang, Z., Bao, Y., Tang, Z. & Li, H. Deep reinforcement learning-based sampling method for structural reliability assessment. Reliab. Eng. Syst. Saf. 199, 106901 (2020).
4. Shen, W. & Huan, X. Bayesian sequential optimal experimental design for nonlinear models using policy gradient reinforcement learning. arXiv:2110.15335 (2021).
5. Blau, T., Bonilla, E. V., Chades, I. & Dezfouli, A. Optimizing sequential experimental design with deep reinforcement learning. In International Conference on Machine Learning 2107–2128 (PMLR, 2022).