Video action recognition collaborative learning with dynamics via PSO-ConvNet Transformer

Author:

Nguyen Huu Phong,Ribeiro Bernardete

Abstract

AbstractRecognizing human actions in video sequences, known as Human Action Recognition (HAR), is a challenging task in pattern recognition. While Convolutional Neural Networks (ConvNets) have shown remarkable success in image recognition, they are not always directly applicable to HAR, as temporal features are critical for accurate classification. In this paper, we propose a novel dynamic PSO-ConvNet model for learning actions in videos, building on our recent work in image recognition. Our approach leverages a framework where the weight vector of each neural network represents the position of a particle in phase space, and particles share their current weight vectors and gradient estimates of the Loss function. To extend our approach to video, we integrate ConvNets with state-of-the-art temporal methods such as Transformer and Recurrent Neural Networks. Our experimental results on the UCF-101 dataset demonstrate substantial improvements of up to 9% in accuracy, which confirms the effectiveness of our proposed method. In addition, we conducted experiments on larger and more variety of datasets including Kinetics-400 and HMDB-51 and obtained preference for Collaborative Learning in comparison with Non-Collaborative Learning (Individual Learning). Overall, our dynamic PSO-ConvNet model provides a promising direction for improving HAR by better capturing the spatio-temporal dynamics of human actions in videos. The code is available at https://github.com/leonlha/Video-Action-Recognition-Collaborative-Learning-with-Dynamics-via-PSO-ConvNet-Transformer.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Human action recognition using an optical flow-gated recurrent neural network;International Journal of Multimedia Information Retrieval;2024-07-16

2. Deep Learning Innovations in Video Classification: A Survey on Techniques and Dataset Evaluations;Electronics;2024-07-11

3. Weighted voting ensemble of hybrid CNN-LSTM Models for vision-based human activity recognition;Multimedia Tools and Applications;2024-06-08

4. Human action recognition with transformer based on convolutional features;Intelligent Decision Technologies;2024-06-07

5. Utilizing Gyroscope Data for Classifying Types of Fencer Movements in an Assistive Coaching System;2024 6th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE);2024-02-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3