Estimation of pore structure and permeability in tight carbonate reservoir based on machine learning (ML) algorithm using SEM images of Jaisalmer sub-basin, India

Author:

Yalamanchi Pydiraju,Datta Gupta Saurabh

Abstract

AbstractAnalyzing the pore structure in carbonate reservoirs plays a crucial role in predicting fluid flow characteristics within these formations. The goal of the study was to use machine learning techniques for pore structure analysis and estimation of permeability in carbonate reservoirs. We implemented these algorithms by examining 2D scanning electron microscope (SEM) images of carbonate samples from the Jaisalmer sub-basin captured at various magnifications. In the initial stage of the analysis, various binarization algorithms were applied to determine carbonate sample porosity. Among these algorithms, the MaxEntropy algorithm gave a porosity value closely aligned with those obtained through petrography analysis. We employed the watershed algorithm to find the pore network parameters of carbonate samples at various magnifications. We observed that changes in magnification affected pore network parameters, resulting in a reduction in pore size distribution, throat radius, and grain size. Subsequently, we employed the numerical lattice Boltzmann method (LBM) to estimate the permeability of carbonate samples and compared to values derived from well logs. We employed machine learning (ML) algorithms, specifically Artificial Neural Network (ANN) and Support Vector Machine (SVM), to predict the permeability of carbonate samples. The input features for these models were the pore network parameters, while the LBM permeability values served as the output. We examine the prediction performance of these methods against the measured LBM permeability by conducting the error analysis and the coefficient of determination ($${R}^{2}$$ R 2 ) calculation. Our findings revealed that the ANN models outperformed the SVM models. Specifically, the ANN model displayed an impressive R2 value of 0.892, along with root mean square error (RMSE), mean squared error (MSE) and, mean absolute error (MAE) values of 1.927, 3.716 and 1.580, respectively. In contrast, the SVM model yielded an R2 value of 0.849, with RMSE, MSE and, MAE values of 2.324, 5.401 and, 2.166 respectively, when assessed on testing data of measured permeability. This study found that ANN is more dependable, robust, and precise than SVM in forecasting carbonate sample permeability.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3