Applying laser induced breakdown spectroscopy (LIBS) and elemental imaging on marine shells for archaeological and environmental research

Author:

Hausmann Niklas,Theodoraki Danai,Piñon Victor,Siozos Panagiotis,Lemonis Andreas,Anglos Demetrios

Abstract

AbstractUsing LIBS for the analysis of archaeological and geological marine mollusc shells is a growing research area that relies on customised instrumentation and specific workflows that can accommodate the variety and precision of the required sampling parameters. However, the increased efficiency offered by LIBS, which enables the study of a larger quantity of shell samples for temperature variation, ecological parameters, and human consumption practices, outweighs the initial efforts required to develop customised instrumentation and workflows. In this work, we present detailed specifications and parameters for the development of a LIBS system capable of generating Mg/Ca images on marine shells that directly correlate with seasonal sea temperatures. Our main objective was to develop specifications that enable easy adaptation of LIBS systems to existing laboratories for studying hard-tissue samples. These specifications were used to develop a customised micro-LIBS system and apply it to a real-world example of an archaeological study to better understand its efficiency on the marine mollusc shells and demonstrate its potential for broader applications in interdisciplinary research. In total 101 shell specimens have been analysed within a time frame of approximately 71 h of machine time, producing 234 images (100 µm resolution: 100 images, 30 µm resolution: 134 images). SEM analysis of the irradiated sections of the shell revealed a primary ablated area of 10–15 µm in diameter, while a secondary affected area of the shell’s crystal fabric extended to 30–50 µm after repeated shots. Overall, this new customised system reliably and efficiently analysed marine mollusc specimens without major destructive effects, enabling additional analyses for other proxies to be carried out. This study highlights the potential of the LIBS method for interdisciplinary research, encompassing applications in paleoclimatology, marine ecology, and archaeology.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3