Wet oxidation and catalytic wet oxidation of pharmaceutical sludge

Author:

Zeng Xu,Liu Jun,Zhao Jianfu

Abstract

AbstractIn this work, wet oxidation and catalytic wet oxidation of pharmaceutical sludge using homogeneous and heterogeneous catalysts were investigated. The results indicate that wet oxidation is a promising method for the highly efficient degradation of pharmaceutical sludge. Under optimal conditions, the highest removal efficiencies of volatile suspended solids (VSS) 86.8% and chemical oxygen demand (COD) 62.5% were achieved at 260 °C for 60 min with an initial oxygen pressure of 1.0 MPa. NaOH exhibited excellent acceleration performance on the VSS removal. The highest VSS removal efficiency of 95.2% was obtained at 260 °C for 60 min with an initial oxygen pressure of 1.0 MPa and 10 g·L−1 of NaOH. By using a Cu–Ce/γ-Al2O3 catalyst, the highest removal rates of VSS 87.3% and COD 72.6% were achieved at 260 °C for 60 min with an initial oxygen pressure of 1.0 MPa and 10 g·L−1 of catalyst. The wet oxidation reaction can be maintained itself owing to the exothermic heat. The produced low-molecular-weight carboxylic acids have potential commercial utilization as organic carbon sources in the biological wastewater treatment processes. The inorganic residues can be utilized for the building materials production. These results implied that the catalytic wet oxidation is a promising method for the volume reduction and resource utilization of pharmaceutical sludge.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3