Video reconstruction from a single motion blurred image using learned dynamic phase coding

Author:

Yosef Erez,Elmalem Shay,Giryes Raja

Abstract

AbstractVideo reconstruction from a single motion-blurred image is a challenging problem, which can enhance the capabilities of existing cameras. Recently, several works addressed this task using conventional imaging and deep learning. Yet, such purely digital methods are inherently limited, due to direction ambiguity and noise sensitivity. Some works attempt to address these limitations with non-conventional image sensors, however, such sensors are extremely rare and expensive. To circumvent these limitations by simpler means, we propose a hybrid optical-digital method for video reconstruction that requires only simple modifications to existing optical systems. We use learned dynamic phase-coding in the lens aperture during image acquisition to encode motion trajectories, which serve as prior information for the video reconstruction process. The proposed computational camera generates a sharp frame burst of the scene at various frame rates from a single coded motion-blurred image, using an image-to-video convolutional neural network. We present advantages and improved performance compared to existing methods, with both simulations and a real-world camera prototype. We extend our optical coding to video frame interpolation and present robust and improved results for noisy videos.

Funder

European Research Council

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thin and lightweight camera based on Pancake lens and deep learning;Optics Letters;2024-08-22

2. Deep Phase Coded Image Prior;2024 IEEE International Conference on Computational Photography (ICCP);2024-07-22

3. Depth-enhanced high-throughput microscopy by compact PSF engineering;Nature Communications;2024-06-07

4. Spatiotemporal Phase Aperture Coding for Motion Deblurring;Coded Optical Imaging;2023-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3