Underwater image restoration based on dual information modulation network

Author:

Wang Li,Li Xing,Li Ke,Mu Yang,Zhang Min,Yue Zhaoxin

Abstract

AbstractThe presence of light absorption and scattering in underwater conditions results in underwater images with missing details, low contrast, and color bias. The current deep learning-based methods bring unlimited potential for underwater image restoration (UIR) tasks. These methods, however, do not adequately take into account the inconsistency of the attenuation of different color channels and spatial regions when performing image restoration. To solve these gaps, we propose a dual information modulation network (DIMN) for accurate UIR tasks. To be specific, we design a multi-information enhancement module (MIEM), empowered by spatial-aware attention block (SAAB) and multi-scale structural Transformer block (MSTB), to guide the inductive bias of image degradation processes under nonhomogeneous media distributions. SAAB focuses on different spatial locations, capturing more spatial-aware cues to correct color deviations and recover details. MSTB utilizes the difference and complementarity between features at different scales to effectively complement the network’s structural and global perceptual capabilities, enhancing image sharpness and contrast further. Experimental results reveal that the proposed DIMN exceeds most state-of-the-art UIR methods. Our code and results are available at: https://github.com/wwaannggllii/DIMN.

Funder

Natural Science Foundation of Jiangxi Province

The school research fund of Nanjing Vocational University of Industry Technology

Open Research Fund of Key Laboratory of River Basin Digital Twinning of Ministry of Water Resources

Open Foundation of Industrial Perception and Intelligent Manufacturing Equipment Engineering Research Center of Jiangsu Province

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3