Iron oxide nanocatalyst with titanium and silver nanoparticles: Synthesis, characterization and photocatalytic activity on the degradation of Rhodamine B dye

Author:

Muraro Pâmela Cristine Ladwig,Mortari Sérgio Roberto,Vizzotto Bruno Stefanello,Chuy Gabriela,dos Santos Cristiane,Brum Luís Fernando Wentz,da Silva William Leonardo

Abstract

AbstractNowadays, there is a growing concern about the environmental impacts of colored wastewater. Thus, the present work aims the synthesis, characterization and determination of photocatalytic activity of iron oxide (Fe2O3) nanocatalyst, evaluating the effect of hybridization with titanium (TiNPs-Fe2O3) and silver (AgNPs-Fe2O3) nanoparticles, on the degradation of Rhodamine B dye (RhB). Nanocatalysts were characterized by XRD, SEM, TEM, FTIR, N2 porosimetry (BET/BJH method), zeta potential and DRS. Photocatalytic tests were performed in a slurry reactor, with the nanocatalyst in suspension, using RhB as a target molecule, under ultraviolet (UV) and visible radiation. Therefore, the photocatalytic activity of the nanocatalysts (non-doped and hybridized) was evaluated in these ideal conditions, where the AgNPs-Fe2O3 sample showed the best photocatalytic activity with a degradation of 94.1% (k = 0.0222  min−1, under UV) and 58.36% (k = 0.007  min−1, under visible), while under the same conditions, the TiO2-P25 commercial catalyst showed a degradation of 61.5% (k = 0.0078  min−1) and 44.5% (k = 0.0044  min−1), respectively. According with the ideal conditions determined, reusability of the AgNPs-Fe2O3 nanocatalyst was measured, showing a short reduction (about 8%) of its photocatalytic activity after 5 cycles. Thus, the Fe2O3 nanocatalyst can be considered a promising catalyst in the heterogeneous photocatalysis for application in the degradation of organic dyes in aqueous solution.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3