Nanophotonic structure inverse design for switching application using deep learning

Author:

Adibnia EhsanORCID,Ghadrdan MajidORCID,Mansouri-Birjandi Mohammad AliORCID

Abstract

AbstractSwitching functionality is pivotal in advancing communication systems, serving as a paramount mechanism. Despite numerous innovations in this field, optical switch design, fabrication, and characterization have traditionally followed an iterative approach. Within this paradigm, the designer formulates an informed conjecture regarding the switch's structural configuration and subsequently resolves Maxwell's equations to ascertain its performance. Conversely, the inverse problem, which entails deriving a switch geometry to achieve a targeted electromagnetic response, continues to pose formidable challenges and necessitates substantial time and effort, particularly under the constraints of specific assumptions. In this work, we propose a deep neural network-based method to approximate the spectral transmittance of all-optical switches. The findings substantiate the efficacy of deep learning in the design of all-optical plasmonic switches, which are renowned as the fastest switches at the nanoscale. The nonlinear Kerr effect in square resonators is leveraged to demonstrate the switching performance. Juxtaposed with conventional simulations, the proposed model showcases a remarkable improvement in computational efficiency. Furthermore, deep learning can resolve nanophotonic inverse design problems without reliance on trial-and-error or empirical strategies. Compared to simulations, the mean squared error for both forward and inverse models is meager, with values of around 0.03 and 0.02, respectively. The deep learning-proposed switches exhibit excellent suitability for integration into photonic integrated circuits, substantially influencing the progression of all-optical signal processing.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3