miR-4653-3p overexpression is associated with a poor prognosis of pancreatic ductal adenocarcinoma via HIPK2 downregulation

Author:

Hirabayashi Kenichi,Miyazawa Masaki,Takanashi Yumi,Morimachi Masashi,Kawanishi Aya,Saika Tsubasa,Nakagohri Toshio,Nakamura Naoya

Abstract

AbstractPancreatic ductal adenocarcinoma (PDAC) is a lethal malignant tumor. Several upregulated and downregulated microRNAs (miRNAs) are associated with invasiveness, tumorigenesis, and prognosis of PDAC. Herein, using in situ hybridization, we evaluated miR-4653-3p expression and pancreatic intraepithelial neoplasia (PanIN) and the association between miR-4653-3p expression and clinicopathological factors in PDAC patients. The miR-4653-3p target was also identified. Ninety PDAC cases, including 30 each with normal pancreatic ducts, low-grade PanINs, and high-grade PanINs, were evaluated. miR-4653-3p expression increased in the order—normal pancreatic duct, low-grade PanIN, high-grade PanIN, and PDAC—with no expression detected in normal pancreatic duct. High expression significantly correlated with advanced pathological T stage, lymph node metastasis, advanced Union for International Cancer Control stage, perineural invasion, venous involvement, and shorter overall and disease-specific survival. Homeodomain Interacting Protein Kinase 2 (HIPK2) was identified as a miR-4653-3p target based on mRNA microarray analysis and database screening. In MIA PaCa-2 cells, miR-4653-3p significantly downregulated HIPK2 expression. HIPK2 expression, unlike that of miR-4653-3p, decreased in the order—normal pancreatic duct, low-grade PanIN, high-grade PanIN, and PDAC. Low HIPK2 expression was associated with shorter overall and disease-specific survival in PDAC patients. Thus, miR-4653-3p associates with tumorigenesis and worse prognosis, partly by reducing HIPK2 expression.

Funder

Japan Society for the Promotion of Science

Tokai University Educational System’s General Research

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3