A clinical tool to predict overall survival of elderly patients with soft tissue sarcoma after surgical resection

Author:

Lv Xianmei,Zhu Lujian,Lan Gaochen,Huang Zhangheng,Guo Qiusheng

Abstract

AbstractWith the aging world population, the incidence of soft tissue sarcoma (STS) in the elderly gradually increases and the prognosis is poor. The primary goal of this research was to analyze the relevant risk factors affecting the postoperative overall survival in elderly STS patients and to provide some guidance and assistance in clinical treatment. The study included 2,353 elderly STS patients from the Surveillance, Epidemiology, and End Results database. To find independent predictive variables, we employed the Cox proportional risk regression model. R software was used to develop and validate the nomogram model to predict postoperative overall survival. The performance and practical value of the nomogram were evaluated using calibration curves, the area under the curve, and decision curve analysis. Age, tumor primary site, disease stage, tumor size, tumor grade, N stage, and marital status, are the risk variables of postoperative overall survival, and the prognostic model was constructed on this basis. In the two sets, both calibration curves and receiver operating characteristic curves showed that the nomogram had high predictive accuracy and discriminative power, while decision curve analysis demonstrated that the model had good clinical usefulness. A predictive nomogram was designed and tested to evaluate postoperative overall survival in elderly STS patients. The nomogram allows clinical practitioners to more accurately evaluate the prognosis of individual patients, facilitates the progress of individualized treatment, and provides clinical guidance.

Funder

The Jinhua traditional Chinese Medicine Science and Technology Research Program Project

The Health Science and Technology Plan Project of Fujian Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3