Relationship between prediction accuracy and uncertainty in compound potency prediction using deep neural networks and control models

Author:

Roth Jannik P.,Bajorath Jürgen

Abstract

AbstractThe assessment of prediction variance or uncertainty contributes to the evaluation of machine learning models. In molecular machine learning, uncertainty quantification is an evolving area of research where currently no standard approaches or general guidelines are available. We have carried out a detailed analysis of deep neural network variants and simple control models for compound potency prediction to study relationships between prediction accuracy and uncertainty. For comparably accurate predictions obtained with models of different complexity, highly variable prediction uncertainties were detected using different metrics. Furthermore, a strong dependence of prediction characteristics and uncertainties on potency levels of test compounds was observed, often leading to over- or under-confident model decisions with respect to the expected variance of predictions. Moreover, neural network models responded very differently to training set modifications. Taken together, our findings indicate that there is only little, if any correlation between compound potency prediction accuracy and uncertainty, especially for deep neural network models, when predictions are assessed on the basis of currently used metrics for uncertainty quantification.

Funder

Rheinische Friedrich-Wilhelms-Universität Bonn

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3