PSO tuned interval type-2 fuzzy logic for load frequency control of two-area multi-source interconnected power system

Author:

Soliman Ahmed Mohammed Attiya,Bahaa Mostafa,Mehanna Mohammed A.

Abstract

AbstractNowadays, most of modern power systems integrate concentrated renewable energy resources power plants like solar and wind parks in addition to central conventional plants. The output power from these concentrated renewable energy resources varies continuously according to weather conditions like solar irradiance value or wind speed and direction, the variation for their output power may be in mega watts. In this work, Robust secondary load frequency controller (LFC) based on one of artificial intelligent technique which called interval type-2 fuzzy logic controller (IT2FLC) has been proposed for two-area multi-source interconnected power system with central solar park power plants in each area while considering non-linearities in the power system. IT2FLC has accommodated vagueness, distortions and imprecision for the power system input signals which caused by weather fluctuations and system non-linearities. In addition to LFC, another controller based also on IT2FLC has been proposed to control the output power from the central solar parks in each area of generation during cloudy periods instead of maximum power point tracking method (MPPT) in order to enhance the stability for the power system during disturbance periods. In order to enhance the performance of the proposed LFC, particle swarm optimization technique (PSO) has been utilized to optimize the proposed LFC gains to minimize the steady state error, over/under shooting value, settling time and system oscillation for the investigated power system frequency. The performance and the superiority of the proposed PSO tuned IT2FLC is evaluated and compared with another LFC based on PSO tuned cascaded PID controller while applying severe demand load and solar irradiance changes. the simulation has been carried out using matlab/simulink program.

Funder

Al-Azhar University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3