Data analysis on the three defect wavelengths of a MoS2-based defective photonic crystal using machine learning

Author:

Ansari Narges,Sohrabi Atieh,Mirbaghestan Kimia,Hashemi Mahdieh

Abstract

AbstractTo reduce the dimension of optoelectronic devices, recently, Molybdenum disulfide (MoS2) monolayers with direct bandgap in the visible range are widely used in designing a variety of photonic devices. In these applications, adjustability of the working wavelength and bandwidth with optimum absorption value plays an important role. This work proposes a symmetric defective photonic crystal with three defects containing MoS2 monolayer to achieve triple narrowband defect modes with wavelength adjustability throughout the Photonic Band Gap (PBG) region, 560 to 680 nm. Within one of our designs remarkable FWHM approximately equal to 5 nm with absorption values higher than 90% for the first and third defect modes are achieved. The impacts of varying structural parameters on absorption value and wavelength of defect modes are investigated. Due to the multiplicity of structural parameters which results in data plurality, the optical properties of the structure are also predicted by machine learning techniques to assort the achieved data. Multiple Linear Regression (MLR) modeling is used to predict the absorption and wavelength of defect modes for four datasets based on various permutations of structural variables. The machine learning modeling results are highly accurate due to the obtained R2-score and cross-validation score values higher than 90%.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3