Biological investigations of Aspergillus ficuum via in vivo, in vitro and in silico analyses

Author:

Shah Zafar Ali,Khan Khalid,Shah Tanzeel,Ahmad Nasir,Muhammad Akhtar,Rashid Haroon ur

Abstract

AbstractSerious human health impacts have been observed worldwide due to several life-threatening diseases such as cancer, candidiasis, hepatic coma, and gastritis etc. Exploration of nature for the treatment of such fatal diseases is an area of immense interest for the scientific community. Based on this idea, the genus Aspergillus was selected to discover its hidden therapeutic potential. The genus Aspergillus is known to possess several biologically active compounds. The current research aimed to assess the biological and pharmacological potency of the extracts of less-studied Aspergillus ficuum (FCBP-DNA-1266) (A. ficuum) employing experimental and bioinformatics approaches. The disc diffusion method was used for the antifungal investigation, and the MTT assay was performed to assess the anticancer effects. Mice were employed as an in vivo model to evaluate the antispasmodic effects. A standard spectrophotometric technique was applied to gauge the urease inhibitory activity. The antifungal studies indicate that both n-hexane and ethyl acetate extracts were significantly active against Candida albicans (C. albicans) with their zone of inhibitions (ZOI) values reported as 19 ± 1.06 mm and 25 ± 0.55 mm, respectively at a dose of 30 µg.mL−1. In vitro cytotoxicity assay against HeLa, fibroblast 3T3, prostate PC3, and breast MCF-7 cancer cell lines was performed. The ethyl acetate extract of A. ficuum was found to be significantly active against MCF-7 with its IC50 value of 43.88 µg.mL−1. However, no substantial effects on the percent cell death of HeLa cancer cell lines were observed. In addition, the A. ficuum extracts also inhibited the urease enzyme compared to standard thiourea. The antispasmodic activity of A. ficuum extract was assessed by an in vivo model and the results demonstrated promising activity at 150 mg.kg−1. Molecular docking results also supported the antifungal, anticancer, and antiurease potency of A. ficuum extract. Overall, the results display promising aspects of A. ficuum extract as a future pharmacological source.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3