Screw dislocation in a Rashba spin-orbit coupled $$\alpha$$-$$T_3$$ Aharonov–Bohm quantum ring

Author:

Islam Mijanur,Basu Saurabh

Abstract

AbstractIn this paper we investigate the effect of a topological defect, such as a screw dislocation in an $$\alpha$$ α -$$T_3$$ T 3 Aharonov–Bohm quantum ring and scrutinized the effects of an external transverse magnetic field and Rashba spin-orbit coupling therein. The screw dislocation yields an effective flux which reshape the periodic oscillations in the persistent current in both charge and spin sectors, with a period equal to one flux quantum. Moreover, they suffer a phase shift proportional to the degree of dislocation, and include scattering effects due to the dislocation present in the system. Such tunable oscillation of the spin persistent current highlights applications of our system as potential spintronic devices. Further, the behaviour of the current induced by the Burgers vector ($$b^z$$ b z ) which denotes the strength of the dislocation is investigated in the absence and presence of an external magnetic field. In both the scenarios, an almost linear decrease in the current profile as a function of the Burgers vector is observed. Notably, without the external magnetic field, the Burgers current suffers a back flow for $$\alpha =1$$ α = 1 (dice lattice), while in the presence of the external magnetic field, for other values of $$\alpha$$ α (e.g., $$\alpha =0.5$$ α = 0.5 ) this back flow occurs for a specific value of $$b^z$$ b z . Additionally, the presence of the distortion induces a chirality effect, giving rise to an additional chiral current even in the absence of an external field. Furthermore, in the absence of field, the Burgers spin current initially rises, attains a maximum before diminishing as $$b^z$$ b z is enhance for all values of $$\alpha$$ α . However, such a non-monotonicity in the Burgers spin current is conspicuously non-existent in the presence of an external field. The chiral current discussed above may hold important applications to spintronics.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3