Amplification of temperature extremes in Arabian Peninsula under warmer worlds

Author:

Vinodhkumar BuriORCID,Ullah SafiORCID,Kumar T. V. LakshmiORCID,Al-Ghamdi Sami G.ORCID

Abstract

AbstractThe Paris Agreement and the Special Report on Global Warming of 1.5 °C from the Intergovernmental Panel on Climate Change (IPCC) highlighted the potential risks of climate change across different global warming levels (GWLs). The increasing occurrence of extreme high-temperature events is linked to a warmer climate that is particularly prevalent in the Arabian Peninsula (AP). This study investigates future changes in temperatures and related extremes over AP, under four GWLs, such as 1.5 °C, 2.0 °C, 3.0 °C, and 4.0 °C, with three different Shared Socioeconomic Pathways (SSPs: SSP1-2.6, SSP2-4.5, and SSP5-8.5). The study uses high-resolution datasets of 27 models from the NASA Earth Exchange Global Daily Downscaled Projections of the Coupled Model Intercomparison Project Phase 6 (NEX-GDDP-CMIP6). The results showed that the NEX-GDDP-CMIP6 individual models and their multi-model means reasonably captured the extreme temperature events. The summer maximum and winter minimum temperatures are projected to increase by 0.11–0.67 °C and 0.09–0.70 °C per decade under the selected SSPs. Likewise, the projected temperature extremes exhibit significant warming with varying degrees across the GWLs under the selected SSPs. The warm temperature extremes are projected to increase, while the cold extremes are projected to decrease under all GWLs and the selected SSPs. Overall, the findings provide a comprehensive assessment of temperature changes over AP in response to global warming, which can be helpful in the development of climate adaptation and mitigation strategies.

Publisher

Springer Science and Business Media LLC

Reference52 articles.

1. Masson-Delmotte, V. et al. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (2021).

2. IPCC. Summary for Policymakers. In Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, In The Context Of Strengthening The Global Response to the Threat of Climate Change, Sustainable Development, And Efforts To Eradicate Poverty (2018).

3. UNFCCC. Adoption of the Paris Agreement. Paris, France: Conference of the Parties. in 1–32 (2015).

4. Dosio, A., Mentaschi, L., Fischer, E. M. & Wyser, K. Extreme heat waves under 1.5 °C and 2 °C global warming. Environ. Res. Lett. 13, 054006 (2018).

5. Seneviratne, S. I. et al. Chapter 11: Weather and Climate Extreme Events in a Changing Climate. (2021).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3