Author:
Hayes Heather C.,Luk Louis Y. P.
Abstract
AbstractAgitation is a commonly encountered stress for enzymes during all stages of production and application, but investigations that aim to improve their tolerance using topological engineering have yet to be reported. Here, the plastic-degrading enzyme IsPETase was cyclized in a range of topologies including a cyclic monomer, cyclic dimer and catenane using SpyTag/SpyCatcher technologies, and their tolerance towards different stresses including mechanical agitation was investigated. The cyclic dimer and catenane topologies were less susceptible to agitation-induced inactivation resulting in enhancement of polyethylene terephthalate (PET) degradation. While contrary to conventional belief, cyclic topologies did not improve tolerance of IsPETase towards heat or proteolytic treatment, the close proximity of active sites in the dimeric and catenane variants was found to enhance PET conversion into small soluble products. Together, these findings illustrate that it is worthwhile to explore the topology engineering of enzymes used in heterogeneous catalysis as it improves factors that are often overlooked in homogeneous catalysis studies.
Funder
Biotechnology and Biological Sciences Research Council
EPSRC Centre for Doctoral Training in Medical Imaging
Publisher
Springer Science and Business Media LLC
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献