Enhancing the yield of Xenocoumacin 1 in Xenorhabdus nematophila YL001 by optimizing the fermentation process

Author:

Han Yunfei,Zhang Shujing,Wang Yang,Gao Jiangtao,Han Jinhua,Yan Zhiqiang,Ta Yongquan,Wang Yonghong

Abstract

AbstractXenocoumacin 1 (Xcn 1), antibiotic discovered from secondary metabolites of Xenorhabdus nematophila, had the potential to develop into a new pesticide due to its excellent activity against bacteria, oomycetes and fungi. However, the current low yield of Xcn1 limits its development and utilization. To improve the yield of Xcn1, response surface methodology was used to determine the optimal composition of fermentation medium and one factor at a time approach was utilized to optimize the fermentation process. The optimal medium composed of in g/L: proteose peptone 20.8; maltose 12.74; K2HPO4 3.77. The optimal fermentation conditions were that 25 °C, initial pH 7.0, inoculum size 10%, culture medium 75 mL in a 250 mL shake flask with an agitation rate of 150 rpm for 48 h. Xenorhabdus nematophila YL001 was produced the highest Xcn1 yield (173.99 mg/L) when arginine was added to the broth with 3 mmol/L at the 12th h. Compared with Tryptic Soy Broth medium, the optimized fermentation process resulted in a 243.38% increase in Xcn1 production. The obtained results confirmed that optimizing fermentation technology led to an increase in Xcn1 yield. This work would be helpful for efficient Xcn1 production and lay a foundation for its industrial production.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3