Correlation between positron annihilation lifetime and photoluminescence measurements for calcined Hydroxyapatite

Author:

Atta Hoda,Mahmoud Kamal R.,Salim El Sayed I.,Elmohsnawy Eithar,El-Shaer Abdelhamid

Abstract

AbstractHydroxyapatite (HAp) Ca10(PO4)6(OH)2 is a compound that has stable chemical properties, composition, and an affinity for human bone. As a result, it can be used in odontology, cancer treatment, and orthopedic grafts to repair damaged bone. To produce calcined HAp at 600 °C with different pH values, a wet chemical precipitation method was employed. All synthesized HAp samples were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), photoluminescence (PL), Zeta potential, and positron annihilation lifetime spectroscopy (PALS). The XRD results revealed that all calcined HAp samples were formed in a hexagonal structure with a preferred (002) orientation at different pH values. The crystal size of the samples was determined using the Scherrer equation, which ranged from 16 to 25 nm. The SEM and TEM results showed that the morphology of the samples varied from nanorods to nanospheres and rice-like structures depending on the pH value of the sample. The PL measurements indicated that the blue and green emission peaks of HAp were due to defects (bulk, surface, and interface) in the samples, which created additional energy levels within the band gap. According to Zeta potential measurements, the charge carrier changed from a positive to negative value, ranging from 3.94 mV to − 2.95 mV. PALS was used to understand the relationship between the defects and the photoluminescence (PL) properties of HAp. Our results suggest that HAp nanoparticles have excellent potential for developing non-toxic biomedical and optical devices for phototherapy.

Funder

Kafr El Shiekh University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3