Fragmentation and correlations in a rotating Bose–Einstein condensate undergoing breakup

Author:

Dutta Sunayana,Lode Axel U. J.,Alon Ofir E.

Abstract

AbstractThe theoretical investigation of rotating Bose–Einstein condensates has mainly focused on the emergence of quantum vortex states and the condensed properties of such systems. In the present work, we concentrate on other facets by examining the impact of rotation on the ground state of weakly interacting bosons confined in anharmonic potentials computed both at the mean-field level and particularly at the many-body level of theory. For the many-body computations, we employ the well-established many-body method known as the multiconfigurational time-dependent Hartree method for bosons. We present how various degrees of fragmentation can be generated following the breakup of the ground state densities in anharmonic traps without ramping up a potential barrier for strong rotations. The breakup of the densities is found to be associated with the acquisition of angular momentum in the condensate due to the rotation. In addition to fragmentation, the presence of many-body correlations is examined by computing the variances of the many-particle position and momentum operators. For strong rotations, the many-body variances become smaller than their mean-field counterparts, and one even finds a scenario with opposite anisotropies of the mean-field and many-body variances. Further, it is observed that for higher discrete symmetric systems of order k, namely three-fold and four-fold symmetry, breakup to k sub-clouds and emergence of k-fold fragmentation take place. All in all, we provide a thorough many-body investigation of how and which correlations build up when a trapped Bose–Einstein condensate breaks up under rotation.

Funder

Israel Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3