Deep learning based diagnosis for cysts and tumors of jaw with massive healthy samples

Author:

Yu Dan,Hu Jiacong,Feng Zunlei,Song Mingli,Zhu Huiyong

Abstract

AbstractWe aimed to develop an explainable and reliable method to diagnose cysts and tumors of the jaw with massive panoramic radiographs of healthy peoples based on deep learning, since collecting and labeling massive lesion samples are time-consuming, and existing deep learning-based methods lack explainability. Based on the collected 872 lesion samples and 10,000 healthy samples, a two-branch network was proposed for classifying the cysts and tumors of the jaw. The two-branch network is firstly pretrained on massive panoramic radiographs of healthy peoples, then is trained for classifying the sample categories and segmenting the lesion area. Totally, 200 healthy samples and 87 lesion samples were included in the testing stage. The average accuracy, precision, sensitivity, specificity, and F1 score of classification are 88.72%, 65.81%, 66.56%, 92.66%, and 66.14%, respectively. The average accuracy, precision, sensitivity, specificity, and F1 score of classification will reach 90.66%, 85.23%, 84.27%, 93.50%, and 84.74%, if only classifying the lesion samples and healthy samples. The proposed method showed encouraging performance in the diagnosis of cysts and tumors of the jaw. The classified categories and segmented lesion areas serve as the diagnostic basis for further diagnosis, which provides a reliable tool for diagnosing jaw tumors and cysts.

Funder

National Natural Science Foundation of China

Ningbo Natural Science Foundation

Major Scientific Research Project of Zhejiang Lab

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PRCnet: An Efficient Model for Automatic Detection of Brain Tumor in MRI Images;2023-10-01

2. Deep Learning in Diagnosis of Dental Anomalies and Diseases: A Systematic Review;Diagnostics;2023-07-27

3. Applying artificial intelligence to detect and analyse oral and maxillofacial bone loss—A scoping review;Australian Endodontic Journal;2023-07-13

4. Systematic Review of Deep Learning Models for Dental Images;2023 7th International Conference on Computing Methodologies and Communication (ICCMC);2023-02-23

5. MR Brain 2D image Tumor and Cyst Classification Approach: an Empirical Analogy;2023 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS);2023-02-18

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3