Basidiomycota species in Drosophila gut are associated with host fat metabolism

Author:

Bozkurt Berkay,Terlemez Gamze,Sezgin Efe

Abstract

AbstractThe importance of bacterial microbiota on host metabolism and obesity risk is well documented. However, the role of fungal microbiota on host storage metabolite pools is largely unexplored. We aimed to investigate the role of microbiota on D. melanogaster fat metabolism, and examine interrelatedness between fungal and bacterial microbiota, and major metabolic pools. Fungal and bacterial microbiota profiles, fat, glycogen, and trehalose metabolic pools are measured in a context of genetic variation represented by whole genome sequenced inbred Drosophila Genetic Reference Panel (DGRP) samples. Increasing Basidiomycota, Acetobacter persici, Acetobacter pomorum, and Lactobacillus brevis levels correlated with decreasing triglyceride levels. Host genes and biological pathways, identified via genome-wide scans, associated with Basidiomycota and triglyceride levels were different suggesting the effect of Basidiomycota on fat metabolism is independent of host biological pathways that control fungal microbiota or host fat metabolism. Although triglyceride, glycogen and trehalose levels were highly correlated, microorganisms’ effect on triglyceride pool were independent of glycogen and trehalose levels. Multivariate analyses suggested positive interactions between Basidiomycota, A. persici, and L. brevis that collectively correlated negatively with fat and glycogen pools. In conclusion, fungal microbiota can be a major player in host fat metabolism. Interactions between fungal and bacterial microbiota may exert substantial control over host storage metabolite pools and influence obesity risk.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference67 articles.

1. Quigley, E. M. M. Gut bacteria in health and disease. Gastroenterol. Hepatol. (N.Y.) 9, 560–569 (2013).

2. Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210–215 (2018).

3. Valdes, A. M., Walter, J., Segal, E. & Spector, T. D. Role of the gut microbiota in nutrition and health. BMJ https://doi.org/10.1136/bmj.k2179 (2018).

4. Ridley, E. V., Wong, A. C., Westmiller, S. & Douglas, A. E. Impact of the resident microbiota on the nutritional phenotype of Drosophila melanogaster. PLoS ONE 7, e36765 (2012).

5. Wiley, N. C. et al. The microbiota-gut-brain axis as a key regulator of neural function and the stress response: Implications for human and animal health 1, 2. J. Anim. Sci. 95, 3225–3246 (2017).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3