No observable non-thermal effect of microwave radiation on the growth of microtubules

Author:

Hammarin Greger,Norder Per,Harimoorthy Rajiv,Chen Guo,Berntsen Peter,Widlund Per O.,Stoij Christer,Rodilla Helena,Swenson Jan,Brändén Gisela,Neutze Richard

Abstract

AbstractDespite widespread public interest in the health impact of exposure to microwave radiation, studies of the influence of microwave radiation on biological samples are often inconclusive or contradictory. Here we examine the influence of microwave radiation of frequencies 3.5 GHz, 20 GHz and 29 GHz on the growth of microtubules, which are biological nanotubes that perform diverse functions in eukaryotic cells. Since microtubules are highly polar and can extend several micrometres in length, they are predicted to be sensitive to non-ionizing radiation. Moreover, it has been speculated that tubulin dimers within microtubules might rapidly toggle between different conformations, potentially participating in computational or other cooperative processes. Our data show that exposure to microwave radiation yields a microtubule growth curve that is distorted relative to control studies utilizing a homogeneous temperature jump. However, this apparent effect of non-ionizing radiation is reproduced by control experiments using an infrared laser or hot air to heat the sample and thereby mimic the thermal history of samples exposed to microwaves. As such, no non-thermal effects of microwave radiation on microtubule growth can be assigned. Our results highlight the need for appropriate control experiments in biophysical studies that may impact on the sphere of public interest.

Funder

Knut och Alice Wallenbergs Stiftelse

Stiftelsen för Strategisk Forskning

Vetenskapsrådet

University of Gothenburg

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3