Utilizing hydrophobic sand to construct an air permeable aquiclude to enhance rice yields

Author:

Wu Jing,Ma XiaoyanORCID,Su Yuming,Qin Shengyi,Pilla Francesco

Abstract

Abstract The Chinese government attaches great importance to the ecological restoration of abandoned open-pit mines, increasing the area of cultivated land, and ensuring food security. Soil reconstruction is a crucial step in ecological restoration of abandoned open-pit mines. This study investigated the utilization of hydrophobic sand to create an Air-Permeable Aquiclude (APAC) under the plant root zones, thereby minimizing water infiltration and enhancing soil aeration. Field plot experiments for 2 years have been conducted, with control groups, Clay Aquitard (CAT), and Plastic Aquiclude (PAC), to evaluate the effects of APAC on rice yield, nitrogen utilization, and water efficiency. The findings revealed that utilizing APAC resulted in a significant rise in rice yield, ranging from 8.09 t/hm² to 9.27 t/hm², which were 7.67–27.16% higher than the control groups. Moreover, the APAC led to a remarkable reduction in irrigation water usage by 37.08%, alongside a substantial boost in Irrigation Water Productivity (IWP) efficiency by 28.64–71.12%. Notably, Nitrogen Partial Factor Productivity (NPFP) exhibited a substantial increase of 7.69–27.06%. These outcomes underscore the APAC’s positive role in water and nutrient conservation and enhanced yields.

Publisher

Springer Science and Business Media LLC

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3