Quantitative biodistribution of nanoparticles in plants with lanthanide complexes

Author:

Hou H.,Xu Z.,Takeda Y. S.,Powers M.,Yang Y.,Hershberger K.,Hanscom Hailey,Svenson S.,Simhadri R. K.,Vegas A. J.

Abstract

AbstractThe inefficient distribution of fertilizers, nutrients, and pesticides on crops is a major challenge in modern agriculture that leads to reduced productivity and environmental pollution. Nanoformulation of agrochemicals is an attractive approach to enable the selective delivery of agents into specific plant organs, their release in those tissues, and improve their efficiency. Already commercialized nanofertilizers utilize the physiochemical properties of metal nanoparticles such as size, charge, and the metal core to overcome biological barriers in plants to reach their target sites. Despite their wide application in human diseases, lipid nanoparticles are rarely used in agricultural applications and a systematic screening approach to identifying efficacious formulations has not been reported. Here, we developed a quantitative metal-encoded platform to determine the biodistribution of different lipid nanoparticles in plant tissues. In this platform lanthanide metal complexes were encapsulated into four types of lipid nanoparticles. Our approach was able to successfully quantify payload accumulation for all the lipid formulations across the roots, stem, and leaf of the plant. Lanthanide levels were 20- to 57-fold higher in the leaf and 100- to 10,000-fold higher in the stem for the nanoparticle encapsulated lanthanide complexes compared to the unencapsulated, free lanthanide complex. This system will facilitate the discovery of nanoparticles as delivery carriers for agrochemicals and plant tissue-targeting products.

Funder

Invaio Science

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3