MedGAN: optimized generative adversarial network with graph convolutional networks for novel molecule design

Author:

Macedo Bruno,Ribeiro Vaz Inês,Taveira Gomes Tiago

Abstract

AbstractGenerative Artificial Intelligence can be an important asset in the drug discovery process to meet the demand for novel medicines. This work outlines the optimization and fine-tuning steps of MedGAN, a deep learning model based on Wasserstein Generative Adversarial Networks and Graph Convolutional Networks, developed to generate new quinoline-scaffold molecules from complex molecular graphs, including hyperparameter adjustments and evaluations of drug-likeness attributes such as pharmacokinetics, toxicity, and synthetic accessibility. The best model was capable of generating 25% valid molecules, 62% fully connected, from which 92% were quinolines, 93% were novel, and 95% unique, preserving chirality, atom charge, and favorable drug-like properties while generating 4831 novel quinolines. These results provide valuable insights into how activation functions, optimizers, learning rates, neuron units, molecule size and constitution, and scaffold structure affect the performance of generative models and their potential to create new molecular structures, enhancing deep learning applications in computational drug design.

Publisher

Springer Science and Business Media LLC

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3