An efficient antenna system with improved radiation for multi-standard/multi-mode 5G cellular communications

Author:

Parchin Naser Ojaroudi,Mohamed Heba G.,Moussa Karim H.,See Chan Hwang,Abd-Alhameed Raed A.,Alwadai Norah Muhammad,Amar Ahmed S. I.

Abstract

AbstractThis paper introduces a multi-input multiple-output (MIMO) antenna array system that provides improved radiation diversity for multi-standard/multi-mode 5G communications. The introduced MIMO design contains four pairs of miniaturized self-complementary antennas (SCAs) fed by pairs of independently coupled structures which are symmetrically located at the edge corners of the smartphone mainboard with an overall size of 75 × 150 (mm2). Hence, in total, the design incorporates four pairs of horizontally and vertically polarized resonators. The elements have compact profiles and resonate at 3.6 GHz, the main candidate bands of the sub-6 GHz 5G spectrum. In addition, despite the absence of decoupling structures, adjacent elements demonstrate high isolation. To the best of the authors’ knowledge, it is the first type of smartphone antenna design using dual-polarized self-complementary antennas that could possess anti-interference and diversity properties. In addition to exhibiting desirable radiation coverage, the presented smartphone antenna also supports dual polarizations on different sides of the printed circuit board (PCB). It also exhibits good isolation, high-gain patterns, improved radiation coverage, low ECC/TARC, and sufficient channel capacity. The introduced antenna design was manufactured on a standard smartphone board and its main characteristics were experimentally measured. Simulations and measurement results are generally in good agreement with each other. Moreover, the presented antenna system delivers low SAR with adequate efficiency when it comes to the appearance of the user. Hence, the design could be adapted to 5G hand-portable devices. As an additional feature, a new ultra-compact phased array millimeter-wave antenna with super-wide bandwidth and end-fire radiation is being introduced for integration into the MIMO antenna systems. As a result, the proposed antenna system design with improved radiation and multi-standard operation is a good candidate for future multi-mode 5G cellular applications.

Funder

Princess Nourah Bint Abdulrahman University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3