Room temperature and high response ethanol sensor based on two dimensional hybrid nanostructures of WS2/GONRs

Author:

Ahmadvand Hassan,Iraji zad Azam,Mohammadpour Raheleh,Hosseini-Shokouh Seyed Hossein,Asadian Elham

Abstract

AbstractHere in this research, room temperature ethanol and humidity sensors were prepared based on two dimensional (2D) hybrid nanostructures of tungsten di-sulfide (WS2) nanosheets and graphene oxide nanoribbons (GONRs) as GOWS. The characterization results based on scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (ESD), Raman spectroscopy and X-ray diffraction (XRD) analysis confirmed the hybrid formations. Ethanol sensing of drop-casted GOWS films on SiO2 substrate indicated increasing in gas response up to 5 and 55 times higher compared to pristine GONRs and WS2 films respectively. The sensing performance of GOWS hybrid nanostructures was investigated in different concentrations of WS2, and the highest response was about 126.5 at 1 ppm of ethanol in 40% relative humidity (R.H.) for WS2/GONRs molar ratio of 10. Flexibility of GOWS was studied on Kapton substrate with bending radius of 1 cm, and the gas response decreased less than 10% after 30th bending cycles. The high response and flexibility of the sensors inspired that GOWS are promising materials for fabrication of wearable gas sensing devices.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3