Low-light image enhancement using generative adversarial networks

Author:

Wang Litian,Zhao Liquan,Zhong Tie,Wu Chunming

Abstract

AbstractIn low-light environments, the amount of light captured by the camera sensor is reduced, resulting in lower image brightness. This makes it difficult to recognize or completely lose details in the image, which affects subsequent processing of low-light images. Low-light image enhancement methods can increase image brightness while better-restoring color and detail information. A generative adversarial network is proposed for low-quality image enhancement to improve the quality of low-light images. This network consists of a generative network and an adversarial network. In the generative network, a multi-scale feature extraction module, which consists of dilated convolutions, regular convolutions, max pooling, and average pooling, is designed. This module can extract low-light image features from multiple scales, thereby obtaining richer feature information. Secondly, an illumination attention module is designed to reduce the interference of redundant features. This module assigns greater weight to important illumination features, enabling the network to extract illumination features more effectively. Finally, an encoder-decoder generative network is designed. It uses the multi-scale feature extraction module, illumination attention module, and other conventional modules to enhance low-light images and improve quality. Regarding the adversarial network, a dual-discriminator structure is designed. This network has a global adversarial network and a local adversarial network. They determine if the input image is actual or generated from global and local features, enhancing the performance of the generator network. Additionally, an improved loss function is proposed by introducing color loss and perceptual loss into the conventional loss function. It can better measure the color loss between the generated image and a normally illuminated image, thus reducing color distortion during the enhancement process. The proposed method, along with other methods, is tested using both synthesized and real low-light images. Experimental results show that, compared to other methods, the images enhanced by the proposed method are closer to normally illuminated images for synthetic low-light images. For real low-light images, the images enhanced by the proposed method retain more details, are more apparent, and exhibit higher performance metrics. Overall, compared to other methods, the proposed method demonstrates better image enhancement capabilities for both synthetic and real low-light images.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3