Identification of endoplasmic reticulum stress-related signature characterizes the tumor microenvironment and predicts prognosis in lung adenocarcinoma

Author:

Wan Li,Chen Zhike,Yang Jian,Wu Gaotian,Xu Yao,Cui Jian,Zhao Xueping

Abstract

AbstractLung adenocarcinoma (LUAD) remains one of the most lethal malignancies worldwide, with a high mortality rate and unfavorable prognosis. Endoplasmic reticulum (ER) stress is a key regulator of tumour growth, metastasis, and the response to chemotherapy, targeted therapies and immune response. It acts via responding to misfolded proteins and triggering abnormal activation of ER stress sensors and downstream signalling pathways. Notably, the expression patterns of ER-stress-related-genes (ERSRGs) are indicative of survival outcomes, especially in the context of immune infiltration. Through consensus clustering of prognosis-associated ERSRGs, we delineated two distinct LUAD subtypes: Cluster 1 and Cluster 2. Comprehensive analyses revealed significant disparities between these subtypes in terms of prognosis, immune cell infiltration, and tumor progression. Leveraging the robustness of LASSO regression and Multivariate stepwise regression, we constructed and validated an ER Stress-associated risk signature for LUAD. This signature underwent assessments for its prognostic value, correlation with clinical attributes, and interaction within the tumour immune microenvironment. By integrating this signature with multivariate cox analysis of distinct pathological stages, we devised an enhanced nomogram, validated through various statistical metrics, with an area under the curve for overall survival at 1, 3, and 5 years post-diagnosis being 0.79, 0.80, and 0.81, respectively. In conclusion, our findings introduce a composite signature of 11 pivotal ERSRGs, holding promise as a potent prognostic tool for LUAD, and offering insights for immunotherapeutic and targeted intervention strategies.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3