An image inpainting-based data augmentation method for improved sclerosed glomerular identification performance with the segmentation model EfficientNetB3-Unet

Author:

He Songping,Zou Yi,Li Bin,Peng Fangyu,Lu Xia,Guo Hui,Tan Xin,Chen Yanyan

Abstract

AbstractThe percent global glomerulosclerosis is a key factor in determining the outcome of renal transfer surgery. At present, the rate is typically computed by pathologists, which is labour intensive and nonstandardized. With the development of Deep Learning (DL), DL-based segmentation models can be used to better identify and segment normal and sclerosed glomeruli. Based on this, we can better quantify percent global glomerulosclerosis to reduce the discard rate of donor kidneys. We used 51 whole slide images (WSIs) from different institutions that are publicly available on the internet. However, the number of sclerosed glomeruli is much smaller than that of normal glomeruli in different WSIs, which can reduce the effectiveness of Deep Learning. For better sclerosed glomerular identification and segmentation performance, we modified and trained a GAN (generative adversarial network)-based image inpainting model to obtain more synthetic sclerosed glomeruli. Our proposed inpainting method achieved an average SSIM (Structural Similarity) of 0.8086 and an average PSNR (Peak Signal-to-Noise Ratio) of 22.8943 dB in the area of generated sclerosed glomeruli. We obtained sclerosed glomerular segmentation performance improvement by adding synthetic sclerosed glomerular images and achieved the best Dice of glomerular segmentation in different test sets based on the modified Unet model.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3