Author:
Lai Lixuan,Cai Siqi,Huang Luyu,Zhou Haiyu,Xie Longhan
Abstract
AbstractPectus excavatum (PE) is one of the most common chest wall defects. Accurate assessment of PE deformities is critical for effective surgical intervention. Index-based evaluations have become the standard for objectively estimating PE, however, these indexes cannot represent the whole information of chest CT images and may associated with significant error due to the individual differences. To overcome these limitations, this paper developed a computer-aided diagnosis (CAD) system based on the convolutional neural network (CNN) to automatically learn discriminative features and classify PE images. We also adopted block-wise fine-tuning methods based on the transfer learning strategy to reduce the potential risk of overfitting caused by limited data and experimentally explored the best fine-tuning degree. Our method achieved a high level of classification accuracy with 94.76% for PE diagnosis. Furthermore, we proposed a majority rule-based voting method to provide a comprehensively diagnostic results for each patient, which integrated the classification results of the whole thorax. The promising results support the feasibility of our proposed CNN-based CAD system for automatic PE diagnosis, which paves a way for comprehensive assessments of PE in clinics.
Funder
National Natural Science Foundation of China
Joint Fund of the Ministry of Education for Equipment Pre-Research
Research Foundation of Guangdong Province
Guangzhou Research Foundation
Natural Science Foundation of Guangdong
Publisher
Springer Science and Business Media LLC
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献