Biomechanical influence of the surgical approaches, implant length and density in stabilizing ankylosing spondylitis cervical spine fracture

Author:

Liu Yaoyao,Wang Zhong,Liu Mingyong,Yin Xiang,Liu Jiming,Zhao Jianhua,Liu Peng

Abstract

AbstractAnkylosing spondylitis cervical spine fractures (ASCFs) are particularly unstable and need special consideration when selecting appropriate internal fixation technology. However, there is a lack of related biomechanical studies. This study aimed to investigate the biomechanical influence of the pattern, length, and density of instrumentation for the treatment of ASCF. Posterior, anterior, and various combined fixation approaches were constructed using the finite element model (FEM) to mimic the surgical treatment of ASCFs at C5/6. The rate of motion change (RMC) at the fractured level and the internal stress distribution (ISD) were observed. The results showed that longer segments of fixation and combined fixation approaches provided better stability and lowered the maximal stress. The RMC decreased more significantly when the length increased from 1 to 3 levels (302% decrease under flexion, 134% decrease under extension) than from 3 to 5 levels (22% decrease under flexion, 23% decrease under extension). Longer fixation seems to be more stable with the anterior/posterior approach alone, but 3-level posterior fixation may be the most cost-effective option. It is recommended to perform surgery with combined approaches, which provide the best stability. Long skipped-screwing posterior fixation is an alternative technique for use in ASCF patients.

Funder

National Natural Science Foundation of China

Third Military Medical University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3