A stacking ensemble classifier-based machine learning model for classifying pollution sources on photovoltaic panels

Author:

Khan Prince Waqas,Byun Yung Cheol,Jeong Ok-Ran

Abstract

AbstractSolar energy is a very efficient alternative for generating clean electric energy. However, pollution on the surface of solar panels reduces solar radiation, increases surface transmittance, and raises the surface temperature. All these factors cause photovoltaic (PV) panels to be less efficient. To address this problem, a stacking ensemble classifier-based machine learning model is proposed. In this study, different sources of pollution on each solar panel are used, and their power generation is recorded. The proposed model includes gradient boost, extra tree, and random forest classifiers, with the extra tree classifier serving as a meta-learner. The model takes into account various weather features during the training process, including irradiance and temperature, aiming to increase its accuracy and robustness in identifying pollution sources on the PV panel. Moreover, the proposed model is evaluated using various methods in order to examine performance metrics such as accuracy, F1 score, and precision. Results show that the model can achieve an accuracy score of 97.37%. The model’s performance is also compared to state-of-the-art machine learning models, demonstrating its superiority in accurately classifying pollution sources on PV panels. By utilizing different sources of pollution and weather features during training, the model can accurately classify different pollution sources, resulting in increased power generation efficiency and the longevity of PV panels. The main results of this study can be used to manage and maintain PV panels since the model can identify PV modules that need to be cleaned to keep producing the most power. Furthermore, the efficiency, reliability, and sustainability of PV panels can be further enhanced by the proposed model.

Funder

Korea Institute for Advancement of Technology

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3