Author:
Ślęzak Jakub,Burov Stanislav
Abstract
AbstractIn this work we establish a link between two different phenomena that were studied in a large and growing number of biological, composite and soft media: the diffusion in compartmentalized environment and the non-Gaussian diffusion that exhibits linear or power-law growth of the mean square displacement joined by the exponential shape of the positional probability density. We explore a microscopic model that gives rise to transient confinement, similar to the one observed forhop-diffusionon top of a cellular membrane. The compartmentalization of the media is achieved by introducing randomly placed, identical barriers. Using this model of a heterogeneous medium we derive a general class of random walks with simple jump rules that are dictated by the geometry of the compartments. Exponential decay of positional probability density is observed and we also quantify the significant decrease of the long time diffusion constant. Our results suggest that the observed exponential decay is a general feature of the transient regime in compartmentalized media.
Publisher
Springer Science and Business Media LLC
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献