A deep learning framework assisted echocardiography with diagnosis, lesion localization, phenogrouping heterogeneous disease, and anomaly detection

Author:

Liu Bohan,Chang Hao,Yang Dong,Yang Feifei,Wang Qiushuang,Deng Yujiao,Li Lijun,Lv Wenqing,Zhang Bo,Yu Liheng,Burkhoff Daniel,He Kunlun

Abstract

AbstractEchocardiography is the first-line diagnostic technique for heart diseases. Although artificial intelligence techniques have made great improvements in the analysis of echocardiography, the major limitations remain to be the built neural networks are normally adapted to a few diseases and specific equipment. Here, we present an end-to-end deep learning framework named AIEchoDx that differentiates four common cardiovascular diseases (Atrial Septal Defect, Dilated Cardiomyopathy, Hypertrophic Cardiomyopathy, prior Myocardial Infarction) from normal subjects with performance comparable to that of consensus of three senior cardiologists in AUCs (99.50% vs 99.26%, 98.75% vs 92.75%, 99.57% vs 97.21%, 98.52% vs 84.20%, and 98.70% vs 89.41%), respectively. Meanwhile, AIEchoDx accurately recognizes critical lesion regions of interest along with each disease by visualizing the decision-making process. Furthermore, our analysis indicates that heterogeneous diseases, like dilated cardiomyopathy, could be classified into two phenogroups with distinct clinical characteristics. Finally, AIEchoDx performs efficiently as an anomaly detection tool when applying handheld device-produced videos. Together, AIEchoDx provides a potential diagnostic assistant tool in either cart-based echocardiography equipment or handheld echocardiography device for primary and point-of-care medical personnel with high diagnostic performance, and the application of lesion region identification and heterogeneous disease phenogrouping, which may broaden the application of artificial intelligence in echocardiography.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3