Construction of an anoikis-associated lncRNA-miRNA-mRNA network reveals the prognostic role of β-elemene in non-small cell lung cancer

Author:

Tan Kai,Zhang Changhui,He Zuomei,Zeng Puhua

Abstract

Abstractβ-Elemene is the main active ingredient in Curcumae Rhizoma that exerts antitumour effects. Anoikis affects tumour development through various biological pathways in non-small cell lung cancer (NSCLC), but the regulation between β-elemene and anoikis remains to be explored. First, we explored the molecular expression patterns of anoikis-associated genes (AAGs) using consensus clustering and characterized the impact of AAGs on patient prognosis, clinical characteristics, and genomic instability. In addition, we revealed that AAG regulatory genes have rich interactions with β-elemene targets, and established a lncRNA-miRNA-mRNA network to explain the effect of β-elemene on anoikis. Finally, to reveal the prognostic effect of their correlation, the prognostic scoring model and clinical nomogram of β-elemene and anoikis were successfully established by least absolute shrinkage and selection operator (LASSO) and random forest algorithms. This prognostic scoring model containing noncoding RNA (ncRNA) can indicate the immunotherapy and mutational landscape, providing a novel theoretical basis and direction for the study of the antitumour mechanism of β-elemene in NSCLC patients.

Funder

National Natural Science Foundation of China Youth Science Foundation Project

Natural Science Foundation of Hunan Province Youth Fund

Youth Fund of Hunan Provincial Administration of Traditional Chinese Medicine

National Natural Science Foundation of China

Young Qihuang Scholars Talent Project of National Administration of Traditional Chinese Medicine

Top Technology Leading Talents Project of Hunan Province

Key R&D projects in Hunan Province

Natural Science Foundation of Hunan Province

Hunan Provincial Health Commission Traditional Chinese Medicine Shennong Leading Talent Project

Hunan Provincial Engineering Research Center of Anti-tumour Chinese Medicine Creation Technology Project

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3