Enhancing diagnosis of benign lesions and lung cancer through ensemble text and breath analysis: a retrospective cohort study

Author:

Wang Hao,Wu Yinghua,Sun Meixiu,Cui Xiaonan

Abstract

AbstractEarly diagnosis of lung cancer (LC) can significantly reduce its mortality rate. Considering the limitations of the high false positive rate and reliance on radiologists’ experience in computed tomography (CT)–based diagnosis, a multi-modal early LC screening model that combines radiology with other non-invasive, rapid detection methods is warranted. A high-resolution, multi-modal, and low-differentiation LC screening strategy named ensemble text and breath analysis (ETBA) is proposed that ensembles radiology report text analysis and breath analysis. In total, 231 samples (140 LC patients and 91 benign lesions [BL] patients) were screened using proton transfer reaction–time of flight–mass spectrometry and CT screening. Participants were randomly assigned to a training set and a validation set (4:1) with stratification. The report section of the radiology reports was used to train a text analysis (TA) model with a natural language processing algorithm. Twenty-two volatile organic compounds (VOCs) in the exhaled breath and the prediction results of the TA model were used as predictors to develop the ETBA model using an extreme gradient boosting algorithm. A breath analysis model was developed based on the 22 VOCs. The BA and TA models were compared with the ETBA model. The ETBA model achieved a sensitivity of 94.3%, a specificity of 77.3%, and an accuracy of 87.7% with the validation set. The radiologist diagnosis performance with the validation set had a sensitivity of 74.3%, a specificity of 59.1%, and an accuracy of 68.1%. High sensitivity and specificity were obtained by the ETBA model compared with radiologist diagnosis. The ETBA model has the potential to provide sensitivity and specificity in CT screening of LC. This approach is rapid, non-invasive, multi-dimensional, and accurate for LC and BL diagnosis.

Funder

National Natural Science Foundation of China

Chinese National Key Research and Development Project

Tianjin Key Medical Discipline (Specialty) Construction Project

Non-Profit Central Research Institute Fund of Chinese Academy of Medical Sciences

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3