Using electrocochleography to detect sensory and neural damages in a gerbil model

Author:

Meenderink Sebastiaan W. F.,Lin Xiaohui,Dong Wei

Abstract

AbstractHearing is one of the five sensory organs that allows us to interact with society and our environment. However, one in eight Americans suffers from sensorineural hearing loss that is great enough to adversely impact their daily life. There is an urgent need to identify what part/degree of the auditory pathway (sensory or neural) is compromised so that appropriate treatment/intervention can be implemented. Single- or two-tone evoked potentials, the electrocochleography (eCochG), were measured along the auditory pathway, i.e., at the round window and remotely at the vertex, with simultaneous recordings of ear canal distortion product otoacoustic emissions. Sensory (cochlear) and neural components in the (remote-) eCochG responses showed distinct level- and frequency-dependent features allowing to be differentiated from each other. Specifically, the distortion products in the (remote-)eCochGs can precisely localize the sensory damage showing that they are effective to determine the sensory or neural damage along the auditory pathway.

Funder

U.S. Department of Defense

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3