Balanced modulation of neuromuscular synaptic transmission via M1 and M2 muscarinic receptors during inhibition of cholinesterases

Author:

Lenina Oksana A.,Petrov Konstantin A.

Abstract

AbstractOrganophosphorus (OP) compounds that inhibit acetylcholinesterase are a common cause of poisoning worldwide, resulting in several hundred thousand deaths each year. The pathways activated during OP compound poisoning via overstimulation of muscarinic acetylcholine receptors (mAChRs) play a decisive role in toxidrome. The antidotal therapy includes atropine, which is a nonspecific blocker of all mAChR subtypes. Atropine is efficient for mitigating depression in respiratory control centers but does not benefit patients with OP-induced skeletal muscle weakness. By using an ex vivo model of OP-induced muscle weakness, we studied the effects of the M1/M4 mAChR antagonist pirenzepine and the M2/M4 mAChR antagonist methoctramine on the force of mouse diaphragm muscle contraction. It was shown that weakness caused by the application of paraoxon can be significantly prevented by methoctramine (1 µM). However, neither pirenzepine (0.1 µM) nor atropine (1 µM) was able to prevent muscle weakness. Moreover, the application of pirenzepine significantly reduced the positive effect of methoctramine. Thus, balanced modulation of neuromuscular synaptic transmission via M1 and M2 mAChRs contributes to paraoxon-induced muscle weakness. It was shown that methoctramine (10 µmol/kg, i.p.) and atropine (50 µmol/kg, i.p.) were equieffective toward increasing the survival of mice poisoned with a 2xLD50 dose of paraoxon.

Funder

Russian Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3