Maize yield prediction and condition monitoring at the sub-county scale in Kenya: synthesis of remote sensing information and crop modeling

Author:

Kipkulei Harison K.,Bellingrath-Kimura Sonoko D.,Lana Marcos,Ghazaryan Gohar,Baatz Roland,Matavel Custodio,Boitt Mark K.,Chisanga Charles B.,Rotich Brian,Moreira Rodrigo M.,Sieber Stefan

Abstract

AbstractAgricultural production assessments are crucial for formulating strategies for closing yield gaps and enhancing production efficiencies. While in situ crop yield measurements can provide valuable and accurate information, such approaches are costly and lack scalability for large-scale assessments. Therefore, crop modeling and remote sensing (RS) technologies are essential for assessing crop conditions and predicting yields at larger scales. In this study, we combined RS and a crop growth model to assess phenology, evapotranspiration (ET), and yield dynamics at grid and sub-county scales in Kenya. We synthesized RS information from the Food and Agriculture Organization (FAO) Water Productivity Open-access portal (WaPOR) to retrieve sowing date information for driving the model simulations. The findings showed that grid-scale management information and progressive crop growth could be accurately derived, reducing the model output uncertainties. Performance assessment of the modeled phenology yielded satisfactory accuracies at the sub-county scale during two representative seasons. The agreement between the simulated ET and yield was improved with the combined RS-crop model approach relative to the crop model only, demonstrating the value of additional large-scale RS information. The proposed approach supports crop yield estimation in data-scarce environments and provides valuable insights for agricultural resource management enabling countermeasures, especially when shortages are perceived in advance, thus enhancing agricultural production.

Funder

Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3