In-vitro biological evaluation of 3,3′,5,5′-tetramethoxy-biphenyl-4,4′-diol and molecular docking studies on trypanothione reductase and Gp63 from Leishmania amazonensis demonstrated anti-leishmania potential

Author:

Schirmann Jéseka G.ORCID,Bortoleti Bruna T. S.ORCID,Gonçalves Manoela D.ORCID,Tomiotto-Pellissier FernandaORCID,Camargo Priscila G.ORCID,Miranda-Sapla Milena M.ORCID,Lima Camilo H. S.ORCID,Bispo Marcelle L. F.ORCID,Costa Idessania N.ORCID,Conchon-Costa IveteORCID,Pavanelli Wander R.ORCID,Dekker Robert F. H.ORCID,Barbosa-Dekker Aneli M.ORCID

Abstract

AbstractAvailable treatments for leishmaniasis have been widely used since the 1940s but come at a high cost, variable efficacy, high toxicity, and adverse side-effects. 3,3′,5,5′-Tetramethoxy-biphenyl-4,4′-diol (TMBP) was synthesized through laccase-catalysis of 2,6-dimethoxyphenol and displayed antioxidant and anticancer activity, and is considered a potential drug candidate. Thus, this study aimed to evaluate the anti-leishmanial effect of TMBP against promastigote and amastigote forms of Leishmania (L.) amazonensis and investigated the mechanisms involved in parasite death. TMBP treatment inhibited the proliferation (IC50 0.62–0.86 µM) and induced the death of promastigote forms by generating reactive oxygen species and mitochondrial dysfunction. In intracellular amastigotes, TMBP reduced the percentage of infected macrophages, being 62.7 times more selective to the parasite (CC50 53.93 µM). TMBP did not hemolyze sheep erythrocytes; indicative of low cytotoxicity. Additionally, molecular docking analysis on two enzyme targets of L. amazonensis: trypanothione reductase (TR) and leishmanolysin (Gp63), suggested that the hydroxyl group could be a pharmacophoric group due to its binding affinity by hydrogen bonds with residues at the active site of both enzymes. TMBP was more selective to the Gp63 target than TR. This is the first report that TMBP is a promising compound to act as an anti-leishmanial agent.

Funder

Instituto Carlos Chagas - Fio Cruz

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3