Kinetics of small and middle molecule clearance during continuous hemodialysis

Author:

Whiting Livia,Bianchi Nathan,Faouzi Mohamed,Schneider Antoine

Abstract

AbstractRegional citrate anticoagulation (RCA) enables prolonged continuous kidney replacement therapy (CKRT) filter lifespan. However, membrane diffusive performance might progressively decrease and remain unnoticed. We prospectively evaluated the kinetics of solute clearance and factors associated with decreased membrane performance in 135 consecutive CKRT-RCA circuits (35 patients). We recorded baseline patients’ characteristics and clinical signs of decreased membrane performance. We calculated effluent/serum ratios (ESR) as well as respective clearances for urea, creatinine and β2-microglobuline at 12, 24, 48 and 72 h after circuit initiation. Using mixed-effects logistic regression model analyses, we assessed the effect of time on those values and determined independent predictors of decreased membrane performance as defined by an ESR for urea < 0.81. We observed a minor but statistically significant decrease in both ESR and solute clearance across the duration of therapy for all three solutes. We observed decreased membrane performance in 31 (23%) circuits while clinical signs were present in 19 (14.1%). The risk of decreased membrane performance significantly increased over time: 1.8% at T1 (p = 0.16); 7.3% at T2 (p = 0.01); 15.7% at T3 (p = 0.001) and 16.4% at T4 (p < 0.003). Four factors present within 24 h of circuit initiation were independently associated with decreased membrane performance: arterial blood bicarbonate level (OR 1.50; p < 0.001), activated partial thromboplastin time (aPTT; OR = 0.93; p = 0.02), fibrinogen level (OR 6.40; p = 0.03) and Charlson score (OR 0.10; p < 0.01). COVID-19 infection was not associated with increased risk of decreased membrane performance. Regular monitoring of ESR might be appropriate in selected patients undergoing CKRT.

Funder

Fondation Leenaards

B Braun Avitum

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3