Association of air pollution and weather conditions during infection course with COVID-19 case fatality rate in the United Kingdom

Author:

Hossain M. Pear,Zhou Wen,Leung Marco Y. T.,Yuan Hsiang-Yu

Abstract

AbstractAlthough the relationship between the environmental factors, such as weather conditions and air pollution, and COVID-19 case fatality rate (CFR) has been found, the impacts of these factors to which infected cases are exposed at different infectious stages (e.g., virus exposure time, incubation period, and at or after symptom onset) are still unknown. Understanding this link can help reduce mortality rates. During the first wave of COVID-19 in the United Kingdom (UK), the CFR varied widely between and among the four countries of the UK, allowing such differential impacts to be assessed. We developed a generalized linear mixed-effect model combined with distributed lag nonlinear models to estimate the odds ratio of the weather factors (i.e., temperature, sunlight, relative humidity, and rainfall) and air pollution (i.e., ozone, $$N{O}_{2}$$ N O 2 , $$S{O}_{2}$$ S O 2 , $$CO$$ CO , $$P{M}_{10}$$ P M 10 and $$P{M}_{2.5}$$ P M 2.5 ) using data between March 26, 2020 and September 15, 2020 in the UK. After retrospectively time adjusted CFR was estimated using back-projection technique, the stepwise model selection method was used to choose the best model based on Akaike information criteria and the closeness between the predicted and observed values of CFR. The risk of death reached its maximum level when the low temperature (6 °C) occurred 1 day before (OR 1.59; 95% CI 1.52–1.63), prolonged sunlight duration (11–14 h) 3 days after (OR 1.24; 95% CI 1.18–1.30) and increased $$P{M}_{2.5}$$ P M 2.5 (19 μg/m3) 1 day after the onset of symptom (OR 1.12; 95% CI 1.09–1.16). After reopening, many COVID-19 cases will be identified after their symptoms appear. The findings highlight the importance of designing different preventive measures against severe illness or death considering the time before and after symptom onset.

Funder

City University of Hong Kong

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3