Author:
Zulqarnain Rana Muhammad,Ma Wen-Xiu,Siddique Imran,Ahmad Hijaz,Askar Sameh
Abstract
AbstractThe relationship between two variables is an essential factor in statistics, and the accuracy of the results depends on the data collected. However, the data collected for statistical analysis can be unclear and difficult to interpret. One way to predict how one variable will change about another is by using the correlation coefficient (CC), but this method is not commonly used in interval-valued Pythagorean fuzzy hypersoft set (IVPFHSS). The IVPFHSS is a more advanced and generalized form of the Pythagorean fuzzy hypersoft set (PFHSS), which allows for more precise and accurate analysis. In this research, we introduce the correlation coefficient (CC) and weighted correlation coefficient (WCC) for IVPFHSS and their essential properties. To demonstrate the applicability of these measures, we use the COVID-19 pandemic as an example and establish a prioritization technique for order preference by similarity to the ideal solution (TOPSIS) model. The technique is used to study the problem of optimizing the allocation of hospital beds during the pandemic. This study provides insights into the importance of utilizing correlation measures for decision-making in uncertain and complex situations like the COVID-19 pandemic. It is a robust multi-attribute decision-making (MADM) methodology with significant importance. Subsequently, it is planned to increase a dynamic bed allocation algorithm based on biogeography to accomplish the superlative decision-making system. Moreover, numerical investigations deliberate the best decision structures and deliver sensitivity analyses. The efficiency of our encouraged algorithm is more consistent than prevalent models, and it can effectively control and determine the optimal configurations for the study.
Funder
Deanship of Scientific Research, King Saud University
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献