Efficient segmentation of active and inactive plaques in FLAIR-images using DeepLabV3Plus SE with efficientnetb0 backbone in multiple sclerosis

Author:

Naeeni Davarani Mahsa,Arian Darestani Ali,Guillen Cañas Virginia,Azimi Hossein,Havadaragh Sanaz Heydari,Hashemi Hasan,Harirchian Mohammd Hossein

Abstract

AbstractThis research paper introduces an efficient approach for the segmentation of active and inactive plaques within Fluid-attenuated inversion recovery (FLAIR) images, employing a convolutional neural network (CNN) model known as DeepLabV3Plus SE with the EfficientNetB0 backbone in Multiple sclerosis (MS), and demonstrates its superior performance compared to other CNN architectures. The study encompasses various critical components, including dataset pre-processing techniques, the utilization of the Squeeze and Excitation Network (SE-Block), and the atrous spatial separable pyramid Block to enhance segmentation capabilities. Detailed descriptions of pre-processing procedures, such as removing the cranial bone segment, image resizing, and normalization, are provided. This study analyzed a cross-sectional cohort of 100 MS patients with active brain plaques, examining 5000 MRI slices. After filtering, 1500 slices were utilized for labeling and deep learning. The training process adopts the dice coefficient as the loss function and utilizes Adam optimization. The study evaluated the model's performance using multiple metrics, including intersection over union (IOU), Dice Score, Precision, Recall, and F1-Score, and offers a comparative analysis with other CNN architectures. Results demonstrate the superior segmentation ability of the proposed model, as evidenced by an IOU of 69.87, Dice Score of 76.24, Precision of 88.89, Recall of 73.52, and F1-Score of 80.47 for the DeepLabV3+SE_EfficientNetB0 model. This research contributes to the advancement of plaque segmentation in FLAIR images and offers a compelling approach with substantial potential for medical image analysis and diagnosis.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3